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The restricted circular three-body problem is investigated when two of the massive bodies, which are treated as point masses, 
move in specified circular orbits in a single plane while the third body of small mass is assumed to be spherically symmetric and 
deformable and its centre of mass moves in the plane of the circular orbits of the first two bodies and rotation around the centre 
of mass occurs around the normal to the plane of motion of the centre of mass. The energy dissipation accompanying the 
deformations of the small, spherically symmetric, deformable body is an important factor affecting the evolution of its motion. 
This energy dissipation leads to the evolution of its orbit and angular velocity of rotation. Since it is assumed that the masses of 
the two bodies (in the case of the solar system, these could be the Sun and Jupiter) relate as one to p (p 4 l), the evolution of 
the motion of the deformable body develops in two stages. During the first, “fast” stage of evolution, its orbit tends towards 
circular with its centre in the massive body with mass equal to unity, and the rotation is identical to the orbital rotation (a state 
of gravitational stabilization, 1:l resonance). In this case, the body turns out to be deformed (oblate with respect to its poles and 
stretched along the radius which joins this body of small mass to the massive body [l, 21. In the second, “slow” stage of evolution, 
the effect of the body with mass u is taken into consideration, which leads to the evolution of the circular orbit of the deformable 
body. 0 2001 Ekevier Science Ltd. AU rights reserved. 

1. FORMULATION OF THE PROBLEM. THE EQUATIONS OF MOTION 

Suppose two point masses MI and A&, the masses of which are equal to unity and TV, (p, 6 1) move in 
circular orbits under the action of Newtonian gravitation forces around a common centre of mass 0 
in the OXYplane. Suppose that 0M2 = b, Oh4r = & and that the angle OL between the OX axis and 
the radius vector OM2 of the point M2 changes according to the law 

w a(t) = - 
f 

1+P 
+a(O), 03 = 2 $ 

wherefis the gravitational constant (Fig. 1). 
Further, assume that the centre of mass C of a viscoelastic, deformable, homogeneous sphere of mass 

m and density p moves in the OXYplane and that R is the radius vector of the point C. The position 
of the points of the sphere is determined by the vector field 

t;(r, t) = R(t) + O(r)@ + 4r.r)) 

R(r) = f L &(r, t)pu!x, j udx = j rot udr = 0, dr = &&&3 

V V 

(1.1) 

Here V = {r : 1 r 1 < ~-0) is the domain in E3 which is occupied by the sphere in its natural undeformed 
state, conditions (1.1) uniquely define the radius vector R(t) of the centre of mass C of the deformable 
sphere and the system of coordinates cXt_~x~, relative to which the sphere, in an integral sense, does 
not rotate [l]. The operator O(t) = O(cp(t)) defines the transition from the system of coordinates Cx9~3 
to the Kijnig system of axes C&E;3 and has the form 
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Fig. 1 

The kinetic energy of the sphere is represented by the functional 

T=+i ~2pdr=+~ [0-‘k+ox(r+u)+i~]~pdx 

where o is the angular velocity vector which is defined by the equality o X 6) = O-lo(-) and has the 
form 

0 = cpe3, e3 = (0, 0, 1) 

In accordance with conditions (l.l), we obtain 

T =~mR2+~~ +2[e3x(r+u)]2pdx+j (+e,x(r+u).i)pdr+~~ ti2p& 
V 

The potential energy functional has the form 

R, =M,C= R+@e, R, =M,C=R-be, e=(cosa,sina.O) 

%[ u] = J a( 1; - a;l1&fx, CI > 0, 0 < a; < 3 
V 

c1= 
E(1 -v) ,_ 20-W 

2(1+v)(L2v) a’- l-v 

(1.2) 

(1.3) 

%[u] is the functional of the potential energy of elastic deformations, corresponding to the classical 
theory of the elasticity at small deformations [l], E is Young’s modulus of elasticity and v is Poisson’s 
ratio. 
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Since ]&I + Ir + u 1 (k = 1,2), the integrand in (1.2) can be expanded in series. Restricting the 
treatment to terms of the third order with respect to the powers of I r + II I /Rk and linear with respect 
to I u IIRk, where Rk = I&I (k = 1,2), we obtain 

l-l ~._f”_cLf”+ f 
4 & 

$L ((rqW-3W1R In9rNO-‘Rlo.u)lpdx+ 

+ -$i ((r,u)-X0-‘R 20.r)(0-‘R20,u)}pdx+ce[ul 

Here 

Rko=R,!Rk, k=1,2 

R, =(R* +2j.tRbcos@+p2bZ)x, Rz =(R* -2Rbcos@+b’)x 

R = I RI, and Q, is the angle between the vectors OC and OMp 
We write the equations of motion in the form of Routh’s equations, using the canonical Delaunay- 

Andoyer variables (1, L, G, cp, I, g) which define the motion of the centre of mass of the sphere and its 
rotation around that Cx3 axis and the Lagrangian variables ul(r, t), uz(r, t), u3(r, t). 

The modulus of the angular momentum vector of the sphere with respect to the system of coordinates 
C&$$ is defined by the equality 

I = V$T = J,,[ u]Cp + G, (1.4) 

Jr,lul= 1 Ie, x(r+u)l*pdr, G, =(e,, J Nr+u)x4p& 
V V 

The change from the variables (R, R) to the canonical Delaunay variables (L, G, I, g) is achieved using 
the relations [3,4] 

1& fm f *m3 ___ 
2 R 2L2 

(1.5) 

R= 
G2 e+coslY 

fm2~,+ecos6~, cosw= ,+ecos6. I=w-esinw, e= 

Here e is the eccentricity of the orbit of the centre of mass of the sphere 6, I, w are the actual, mean 
and eccentric anomalies respectively and g is the longitude of the perihelion from the ascending node. 
In the Delaunay variables 

R=(Rcos(g+@. Rsin(g+@,O), @=g+6-a 

The Routh functional is defmed by the equality 

$9, = T2-T,, + I-I 

T2 =irnk* +‘J $*[e, x(r+u)]‘pdX, To 
2, 

By virtue of the transformations (1.4) and (1.5), we obtain 

~[I,L,G,cp,l.g.li,u,a]= ---- 
U-G,)’ f2m3 1 J i2pdr+ 

2J3,[u] 2L2 2 v 

+ pjm(g-J-) +f[ I(r,u)-3(0-‘R,o,r)(O-‘R,o,u)]pdx+ 

+$ ((r.u)-X0-‘R 20rr)(O-'R20.u))p~+~[~l (1.6) 
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The functional .Js3 [II] can be represented in the form of the sum of the moment of inertia of the 
undeformed sphere with respect to the C& axis, the linear part of the functional Js3 [u] with respect to 
the components of the vector II and the quadratic part of this functional with respect to the components 
of the vector u 

&[u] = A + J’;;‘[u] + J;:‘[u] 

A= -fmr;, 
5 

Jg[u] = 21 [(r,u)- ( e~,rXe3.u)lpdx, &‘bl= J [u2 -O+W*lpdr 
V V 

The equations of motion of the viscoelastic sphere are written in the form of Routh’s equations 

j I -+Yi+V,R+V,9+A, Su+X2r0t6u dx=o, VSUG(W~(V))3 
V 1 I 

(1.7) 

(1.8) 

where (Wi ( v))3 ’ IS the Sobolev space 9[&] = x%[u] is a dissipative functional and x is the coefficient 
of internal viscous friction. The last equation is written in the form of the d’Alembert.-Lagrange varia- 
tional principle and contains the two undetermined multipliers hi(f) and A&), which are generated by 
conditions (1.1). 

We shall assume that lowest frequency of the natural oscillations of the sphere is far greater than 
the angular velocities @and 03. This means that, for an appropriate choice of the scales of the dimen- 
sioned quantities, the numerical value of the modulus of elasticity of the material of the sphere E will 
be large and the parameter E = E-i will be small. The displacements u(r, t) after the decay of the natural 
oscillations due to the existence of dissipative forces will be proportional to the small parameter E 

II@, t) = Eu,(r, 2) 

If it is assumed that E f 0, t.~ = 0, the system of equations (1.7) and (1.8) will describe the evolution 
of the motion of a viscoelastic sphere in a central Newtonian force field, subject to the condition that 
the orbital plane of the centre of mass remains fixed and rotation around the centre of mass occurs 
around the normal to this plane. A spatial version of this problem, as well as the above-mentioned special 
case, have been studied in [l, 51. It was shown that, when there is energy dissipation, the deformable 
planet tends to a steady motion in which the centre of mass of the planet describes a circle and its 
orientation is unchanged in the orbital axes. The rate of this evolution is of the order of EX. 

We will now study the case when E # 0, u # 0 and determine how the existence of a third body 
(a planet of mass p,) affects the evolution of the motion of the viscoelastic sphere. 

2. CONSTRUCTION OF THE APPROXIMATE EVOLUTIONARY 
EQUATIONS OF MOTION OF A VISCOELASTIC SPHERE IN THE 

RESTRICTED THREE-BODY PROBLEM 

Taking account of formulae (1.3), we represent the Routh functional (1.6) in the form 

a= (I-c,)* f2m3 ---Q i*pdx+H[~,R,~,P,u]+‘6,[u] 
2J33[U] 2L2 2 v 

Qz=g+6-a, p=g+b-cp 

H[p,R,aq3,~]=F~+j {I((c,u)--~F~(~J)(~o.U)- 
V 

-F3[(~,r)(~l.u)f(~,.r)(50ru)1- Fq(51~rXEi7u)W 

&, = O-lRo=(cos fl. sin p,O> 

5, = 0-ie = (cos (p - 4% sin@ - a), 0) 

Fi=F&,R,Q), i=O,1,...,4 

(2.1) 
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Hence, the dependence of the functional H on the variables L, G, I, g, cp in terms of the functions R, 
a, p is achieved using formulae (1.5) and (2.1). 

The functions Fj (i = 0, 1, . . . , 4) can be expanded in series in powers of the small parameter k. 
Restricting the treatment to terms of zero- and first-order infinitesimals in p, we obtain 

Fo=P&, fol=fmR-‘(qcos@-P) 

FI =fro + PA 19 f,o = pfR3p fr I = PfR3@3-3q ~0s @I 

F2=f2o+tiit fzo= 3 pjR-3. f2, = 3 pJx-3 @‘-5q cos @) 

F3 = I.&I, A= 3PfR3 (q-& 

F4 = IJ& f41= WfR3q2Ps 

q = b/?-’ , p = (l-2q cos CD + q2)-“2 

We will henceforth restrict the treatment to considering a class of quasicircular orbits, that is, orbits 
with an eccentricity equal to zero. For this purpose, we will show that Eqs (1.7) admit of the set of 
solutions indicated below. 

Lemma 1. The system of equations (1.7) has, as its solutions, the class of quasicircular orbits when 
the eccentricity e(t) = 0. 

proof. Consider the difference L -G we will show that, by virtue of Eqs (1.7), the time derivative of this difference 
vanishes when e = 0. In fact 

i e_aa ~ aH aH _ ----=---= 
ag al as al 

=aH &b aH a@ aH iJR aH &b dHap 
ti ag+~&YGGi-SSr-dpT 

From the definition of the functions Q, and p, according to formulae (2.1), we obtain 

a@ 
_=I, p, ?!!LEE=E, ap=agas=as 
38 ar ai3 ar w ai a6 al ar 

Next, according to the transformation (1.5) 

aR L3 ae (I +e~~~6)2 
;jr=fm2Gesin6, al= (,_e2)# 

When e = 0, we have aRla1 = 0, a%llal = 1. Consequently i- d = 0. Lemma 1 is proved. 

Since, for the class of quasicircular orbits, the Delaunay variables degenerate, it is advisable in this 
case to use the canonical Poincare variables [6] 

A= L, t-=L-G, h=l+g, y=-g 

For the class of quasicircular orbits (e = 0) 

F(t)=O. R=A21fm2, 6=1, @=5-a, j3=h-cp 

The Routh functional in the Andoyer-Poincare variables has the form 

St(f,A,cp,h,ti,u,a]= ---- U-G,)* f2m3 1 I ti2pdx+ 

2Jss[u] 2A2 2 v 

(2.2) 

+ WP, R, ‘k i-i ul + %e[ul 

and R, tD, p are defined by relations (2.2). 
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We represent the equations of motion in the form 

i=_!!E=__=_ aH aH 

acp a9 aij 

&=a% _!!k_= f2m3+aH 
ah-l+p A3 

a3 
ah I+C( 

(2.3) 

1-G” 
J33tul 

I-G 
zle3 
J33Iul 

xb]- 

_pC-u)2 
J:3bl 

[r+u-(e3,r+u)e3]-t-V,H+V,%+Vti9+A,)6u+ 

+ A, rot Gu]u!x = 0. V6u E (kg (V))3 (2.4) 

If E = 0, then u(r, t) = 0 and Eqs (2.3) take the form 

(2.5) 

Here 

Equations (2.5) describe the motion of a sphere as a rigid body in the classical restricted three-body 
problem in the class of quasicircular orbits. 

When E # 0, according to the method of separation of the motions [l], after the decay of the natural 
oscillations of the viscoelastic sphere the solution u(r, t) is sought in the form 

Here, it is also necessary to seek the 
u(r, f) = eu,(r, 2) + . . . 

Lagrange multipliers Xi and X2 in the form of expansions in powers of E 

The equation for the function q(r, t) takes the form 

I2 I2 
-p7r+pz(e3,rk3 +F;r-4&&i,- 

(2.7) 

Gauss theorem 

j A, rot &a& = j &I x A, )I& 
V av 
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where n is the normal to the sphere surface aV, was used to obtain the last integral in formula (2.7). 
Differentiation with respect to time in (2.7) is carried out by virtue of the “unperturbed” system (2.5) 
and, therefore, in Eq. (2.7) 

gp+e3 x+0 

Since the work of the elastic and dissipative forces is zero in infinitesimal rotations putting 
6u = 6ar X r in (2.7), we obtain 

,‘, (&o xn)(&xXr)do=~ R~(&,,&x)=O~ Vtia~E~ 

whence it follows that A20 = 0. Next, putting &I = a, aEE3, we obtain from (2.7) that Ala = 0. 
Hence, the equation for the function u1 in the first approximation has the form 

I2 I2 
&V%[IJ, +xli,l=p--- A2 r-pT(r.e3k3 - F;r+ F,(&.r& + 

+&[(&r& +(5,.r)~l+F4&r)& 
W-9 

Here 

-Vdivu+Au 

The boundary conditions for the function u1 consist of the fact that the stresses on the sphere surface 
are equal to zero 

alI =o (2.9) 

Equation (2.8) can be represented in the form 

II, = diag(l; h-2) (2.10) 

~r=-F;r+Fz(g,r)~++F,[(~.r)5, +(5~.r)501+F,(51,r)51 

g=Bz,trBz= -3F;+F, +2F,COSo+F,=o 

The matrices of the operators B1 and B2 are symmetric matrices with a zero trace. 
Since Eq. (2.10) is linear, its solution can be represented in the form of the sum of three functions 

which satisfy the equations 

ul = u11 + 42+ ui3 (2.11) 

EVQU, II = $pofr. EVC&[q2] = ~pWfB,r, &V%[q3 + pi13] = Bg (2.12) 

and boundary conditions (2.9). 
The solutions of Eqs (2.12) have the form [7] 

II,, =- $p6$[d,r2 +d,]r 

Ul2 +&0,u,,= l-x-$ u1m 
( 1 

(2.13) 

Uljo =a,(Bj_,r,r)r+a,r2Bj_,r+a3Bj_,r, j=2,3 
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d _(l+v)(l-2~). d =_(3-v)(l-2v),.. 
’ - 2(4-3v) ’ 2(4 - 3v) 

1+v 
at==. a2=- 

(l+v)(2+v) 
, a3= 

(I +v)(2v+3) 2 

5v+7 5v+7 ‘O 

The function u13 is represented by the tlrst two terms of the power series in x under the assumption 
that xokl -G 1 (k = 1,2,3). Differentiation with respect to time in the expression for the function u13 
is carried out by virtue of the “unperturbed” system (2.5). 

The solution found 

u =Ellt = Hull + u12 + u,3) 

describes the forced oscillations of the viscoelastic sphere. According to the asymptotic method for the 
separation of motions [l], this solution now has to be substituted into the right-hand sides of Eqs (2.3). 
In carrying out the above mentioned procedure, triple integrals over the domain Shave to be repeatedly 
calculated. We will now formulate a number of assertions which help to simplify these calculations 
substantially. 

Lemma 2. If 

u = -c(d,r2 + d2)r 

then 

i (r,u)k = 3cDi. ] (P,r)(Q,u)dx = cD,(P,Q); b, = -&c~~(I - 2~) 
V 

where R, Q are constants which are independent of r. 

Lemma 3. If 

u = c[a,(Br, r)r + a2r2Br + a@] 

where B is a symmetric matrix with a zero trace, then 

(P,jrxudx)=O, J(r,u)&=O 
V V 

i (P,r)(Q,u)dr=cD,(BP,Q), D2 = 4xrJ~~~~~‘,“:;‘3’ 

and c, P Q, B are independent of r. 
Lemmas 2 and 3 are proved by direct evaluations of the integrals over the sphere. 
Substituting the solution u = &ul into Eqs (2.3), a closed system of ordinary differential equations 

in the functions 1, A, a’, and j3 is obtained, containing the small parameters E, x, lo,, which determines 
the effect of the forced oscillations of the viscoelastic sphere on its translational - rotational motion. 
In view of the complexity of these equations, we will represent them in the general form 

i=Il;, A=P,, i=p,, fi=p, 

S = P,U,A,@,E,X,P), k = l-2.3,4 

(2.14) 

The right-hand sides of system (2.14) are 2T-periodic with respect to the variable @ and are 
independent of the variable l3. The fourth equation of (2.14) therefore separates from the equations 
of this system and can be integrated after the functions 1, A, <p from first three equations have been 
determined. In the following step, we shall consider the system of the first three equations of (2.14) as 
a system with a small parameter l,~ with fixed values of E, and x. When F = 0, we obtain 
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i = I8&@rp*o;(o, - 0, ) 

A = -I~E~D~P*u$(o~ - 0,) 

i=o, - ~3 + ~E@~P*A-‘cI$(o~ + 6~:) 

(2.15) 

System (2.15) has the solution 

J=](O), A=h(O), @=wr+Q(O) 

o = o2 - cc3 + 6~@p*o,2 (0: + 60;) / h(0) 

and the initial values I(0) and h(0) are connected by the relation 

f(O)/A = Pm3/(A(W3 

This motion is taken as the unperturbed motion. It corresponds to a state of gravitational stabilization 
of the sphere in a circular orbit. 

We will seek a solution of the first three equations of (2.14) in the form of expansions 
[I, 81 

I=J,+ll&,(J,W)+p*N,*(J*~)+ . . . . A= J, +P.N,,~J,W+P*N,,(J,~~)+... 

~=w+~~(J,\y)+~‘~~(J,w)+..., J=(J,,J,), q(J,)=o,tJd 

where the functions Nu, Nx, A& (Jc = 1,2, . . .) are 2 -p v eriodic in the variable + and have zero mean 
with respect to this variable. 

As functions of time, J,, Jz, + are defined by the differential equations 

j, =@,,(J)+ . . . . j, = w,,(J)+..., t$=w(J)+@,(J)+... 

The first approximation equations for the slow variables have the form 

A,, + aN,, -co = -2qD2(f2,, 
w 

sin w + f4, sin Ip cosI40(0, - w,) - 

(2.16) 

+wD, f20 
{ 

$(fj, sinv+ f4,sin\ycospW-02 -03)- 

To determine the functionsA,, andA2,Q, it is necessary to average the right-hand sides of system 
(2.16) over the angular variable JI. As a result, we obtain 

A,, =- A2, 
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The approximate equations, describing the evolution of the variables I and A, are as follows: 

J, = -J2 = 36E~P*@&J(q) 

a(q) = 
1 -qcosyl f1m3 

(1 -2qcosyr+q*)g ’ 
0 =-. 2 

523 

Taking account of the relations 

from (2.17) we obtain the differential equation 

4 = EXCLnq94q), n = W*.f 24 > o 
mb8 

(2.17) 

(2.18) 

for the dimensionless variable 4. 
Graphs of the function u(q) are shown in Fig. 2. When q = 1, the integral, which determines the 

function a(q), diverges. Since, q = -bRe2R, then R < 0 when R > b and R > 0 when R c b. This means 
that the orbit of the deformed viscoelastic sphere approaches the orbit of a body of mass CL. In this 
approximation, the angular velocity o2 tends to the angular velocity o3 and the variable Cp ceases to be 
a fast variable, which does not allow us to use the scheme of the asymptotic method which has been 
adopted above. 

Graphs of the function q = q(t), obtained by integrating Eq. (2.18) under the assumption that the 
coefficient EX~J.Z~ = 1, are shown in Fig. 3. If, at the initial instant of time q(0) > 1 (inner planets), q 
decreases and tends to unity while, if q(0) c 1. q increases and also tends to unity. As q approaches 
unity, the rate of evolution increases, since the corresponding integral on the right-hand side of Eq (2.18) 
diverges when q = 1. 

If w2 and o3 are close to one anther, this means that the deformed sphere during its motion in the 
orbit periodically comes close to the body of mass l,~ and the problem arises of their mutual capture 
with the formation of a binary planetary system, similar to the Earth-Moon system. The Sun-Jupiter 
system can serve as an example of such a situation in the Solar system and the deformable planets are 
the numerous satellites of Jupiter which have experienced capture by Jupiter during the evolution of 
their orbital motions around the Sun. The same considerations apply to the Sun-Saturn system where 
Saturn has numerous satellites. 

-0.5 

4 

-1.0 I I - I 
1 2 4 4 

Fig. 2 
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Fig. 3 
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